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Abstract

An approach based on a discontinuous Galerkin discretization is proposed
for the Bhatnagar-Gross-Krook model kinetic equation. This approach al-
lows for a high order polynomial approximation of molecular velocity dis-
tribution function both in spatial and velocity variables. It is applied to
model normal shock wave and heat transfer problems. Convergence of solu-
tions with respect to the number of spatial cells and velocity bins is studied,
with the degree of polynomial approximation ranging from zero to four in
the physical space variable and from zero to eight in the velocity variable.
This approach is found to conserve mass, momentum and energy when high
degree polynomial approximations are used in the velocity space. For the
shock wave problem, the solution is shown to exhibit accelerated conver-
gence with respect to the velocity variable. Convergence with respect to the
spatial variable is in agreement with the order of the polynomial approxima-
tion used. For the heat transfer problem, it was observed that convergence of
solutions obtained by high degree polynomial approximations is only second
order with respect to the resolution in the spatial variable. This is attributed
to the temperature jump at the wall in the solutions. The shock wave and
heat transfer solutions are in excellent agreement with the solutions obtained
by a conservative finite volume scheme.
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1 INTRODUCTION
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1. Introduction

Over the last decade, numerical modeling of flows in gas-driven micro-
and nanoscale devices has drawn much attention due to its application to
sensors, actuators, filters, pumps, flow control systems, and so forth. For
many of these devices, development stems from trial and error approaches
fitted around device fabrication. For their development to take a leap for-
ward, accurate and efficient numerical modeling is necessary in areas where
flow diagnostics may be limited or impossible. The choice and use of the
numerical approach suitable to microscale flows is primarily related to a
number of fluid dynamic effects peculiar to these flows. These effects, such
as velocity slip, temperature jump, thermal creep, and viscous heating, dom-
inate in many microdevices based on microelectromechanical technologies.
Due to the small characteristic dimensions of microscale flows—typically on
the order of tenths of micrometers to millimeters—heat conductivity and
diffusivity play a very important role. Large surface-to-volume ratios imply
that gas-surface interactions are very important. The gas mean free paths
are comparable to characteristic flow dimensions, which results in significant
deviation from equilibrium. This means that in many cases conventional
computational fluid dynamics methods such as the solution of Navier-Stokes
equations are not applicable. Instead modeling must be based on kinetic gas
theory.

Kinetic gas theory describes gas properties through the distribution func-
tion of molecular velocities. The governing equation for the velocity distri-
bution function is the Boltzmann equation. It expresses the variation of the
distribution function due to molecular free flight, action of external forces and
intermolecular collisions. For a single species monatomic gas, the Boltzmann
equation has the form

∂f

∂t
+ ~u

∂f

∂~x
+

~X

m

∂f

∂~u
=

∫

(f ′f ′

1 − ff1)gb db dε d ~u1, (1)

where the velocity distribution function f is defined by the condition that
f(t, ~x, ~u) d~x d~u is the number of molecules at time t with velocities between
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1 INTRODUCTION

~u and ~u+ d~u and coordinates between ~x and ~x+ d~x. Here, ~X is the external
force, g = |~u− ~u1| is the magnitude of relative velocity of colliding molecules,
and b and ε are geometric impact parameters.

The Boltzmann equation is a nonlinear integro-differential equation amenable
to analytical solution only for a small number of special cases of collisionless
or spatially homogeneous problems. Difficulties encountered in numerical
solution of the Boltzmann equation are primarily attributed to the multidi-
mensional phase space—physical coordinates and velocity coordinates—and
the multidimensional collision integral in the right-hand side. For three-
dimensional flows of monatomic gases the collision integral involves integra-
tion over a five-dimensional domain. This limits the direct numerical inte-
gration of the Boltzmann equation [1] to simplified collision models, such
as hard sphere molecules, and one- and two-dimensional flow problems. The
molecular dynamics method [2] is also applicable to the solution of the Boltz-
mann equation, but it is even more limited in terms of flow dimensionality
and problem size. The most powerful and widely used approach to the so-
lution of the Boltzmann equation is currently the direct simulation Monte
Carlo (DSMC) method [3].

Although the DSMC method is more efficient than the two former ap-
proaches, it still suffers from high computational cost compared to conven-
tional continuum CFD methods. The computational cost limitation of the
DSMC method are especially severe at low Knudsen numbers; in many cases
it makes this method an unacceptable choice. This is the case for three-
dimensional low speed flows where the computational cost is impacted by
flow dimensionality, the long time to reach steady state, the low signal-to-
noise ratio, multiple physical scales and other factors.

There are several alternative DSMC-based approaches proposed to deal
with the problem of low signal-to-noise ratio that allow reduction in macropa-
rameter sampling time compared to the standard DSMC method [4, 5, 6, 7].
Although all these techniques significantly reduce steady-state time averaging
cost, they do not deal with the computational cost associated with long times
to reach steady state typical for low speed micro- and nanoscale flows. This
time is usually comparable with or larger than the time needed to sample
macroparameters, and thus any attempt to shorten the latter is bounded by
the former. In addition, these methods do not address the problem of particle
correlations and related solution accuracy, peculiar for particle methods and
greatly amplified for low-speed flows. Finally, particle approaches are poorly
suited for unsteady fluid-thermal coupling due to extremely high statistical
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2 CHALLENGES OF THE NUMERICAL SOLUTION OF THE BGK
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scatter of instantaneous ensemble-averaged heat fluxes from gas to surface.
This means that current applications of particle-based, statistical ap-

proaches to the solution of the Boltzmann equation for modeling low-speed
microscale gas flows are fairly limited. A plausible numerical alternative is a
deterministic solution of several available simplified forms of the Boltzmann
equation, known as model kinetic equations. Two of the most known model
kinetic equations, the Bhatnagar-Gross-Krook (BGK) [8] and the ellipsoidal
statistical (ES) [9] kinetic models, use a non-linear relaxation term instead
of the full Boltzmann collision integral. In spite of the simpler collision term,
both models possess the same collision invariants as the Boltzmann equation.

The main objective of this work is to present a new approach to the so-
lution of the BGK model kinetic equation based on a Galerkin discretization
of both physical and velocity space and to analyze its applicability to model
microscale gas flows. Advantages and disadvantages of the discontinuous
Galerkin (DG) method of solution of model kinetic equations are discussed.
For two classical problems of rarefied gas dynamics—normal shock wave and
heat transfer between parallel plates—the DG solutions are compared with
the solutions obtained by a finite volume (FV) approach.

2. Challenges of the numerical solution of the BGK equation

The BGK equation is a kinetic model obtained from an intuitive simpli-
fication of the collision integral in the Boltzmann equation. Similar to the
Boltzmann equation, it is solved for the multi-dimensional molecular velocity
distribution function. In the BGK model the collision operator is replaced
with a simpler operator

ν(f0 − f),

where ν(t, ~x) is the collision frequency and f0(t, ~x) is the Maxwellian equilib-
rium distribution function

f0 = n(t, ~x)(2πRT (t, ~x))−3/2 exp
(

−
(~u − ~̄u(t, ~x))2

2RT

)

. (2)
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2 CHALLENGES OF THE NUMERICAL SOLUTION OF THE BGK

EQUATION

The gas density, n, bulk velocity, ~̄u and temperature, T , are defined as follows:

n(t, ~x) =

∫

R3

f(t, ~x, ~u)d~u;

n(t, ~x)~̄u(t, ~x) =

∫

R3

~uf(t, ~x, ~u)d~u;

n(t, ~x)T (t, ~x) =
1

3R

∫

R3

(~u − ~̄u)2f(t, ~x, ~u)d~u, (3)

where R is the gas constant. The BGK model satisfies the mass, momentum,
and energy conservation laws and the Boltzmann’s H-theorem expressing the
increase of entropy of the gas under consideration. Kinetic models should
also reproduce the gas transport coefficients—viscosity, thermal conductivity
and species diffusivity—resulting from the Boltzmann equation. The primary
advantage of this numerical alternative is its relatively high computational
efficiency. Previous application of the solution of the model kinetic equations
to low-speed microscale gas flows showed an improvement in numerical effi-
ciency of more than two orders of magnitude using a deterministic solution
of model kinetic equations was used instead of the DSMC method [10, 11].

Current approaches to the solution of model kinetic equations include
either finite difference [10] or, much more frequently, finite volume methods
[12, 13, 14]. Finite volume approaches are generally more robust and may be
applied to complex two- and three-dimensional geometries. There is also a
methodology that enforces conservation laws [12]. However, there are several
problems related to the application of finite volume approaches to model
low-speed microflows. First, their efficiency, while much higher than that of
DSMC, is still much lower than the efficiency of continuum CFD solvers. This
is primarily related to the multi-dimensionality of the velocity distribution
function which depends on three spatial coordinates and three components
of velocity. The existing finite volume solvers for model kinetic equations
are typically second order in physical space. Their approximation in velocity
space is generally based on piece-wise constant functions, also known as the
discrete ordinate approach. As a result, a large number of velocity bins
and spatial cells is usually needed to obtain a converged solution. This
significantly limits the application of these solvers to three-dimensional flows
with a considerable degree of non-equilibrium.

The second problem is related to virtual cells behind the surface that are
necessary in the implementation of finite volume schemes. The use of such
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EQUATION

cells impacts the accuracy of calculation of fluxes at gas-solid interfaces.
Errors caused by the use of virtual cells not only affect gas properties near
the surface, but also propagate into the gas volume. The property affected
most is the gas velocity. An example of undesirable numerical effects induced
by virtual cells is given in Figure 1, where the x velocity and streamlines are
shown around a radiometer vane immersed in a 6 Pa argon gas and heated
to 415 K on the left side and 395 K on the right side. The radiometer is
centered at (0, 0). The lower boundary is the symmetry plane, and the other
boundaries are chamber walls kept at 300 K. It is seen that near the chamber
walls there are finite (about 0.1 m/s) flow velocities in the direction normal
to the wall. These artificial velocities clearly change the shape of the large
vortex surrounding the vane and affect the radiometric force prediction.

Figure 1: Flow velocity and streamlines around a radiometer vane in a 6 Pa argon gas,
obtained by a finite volume approach to the BGK equation.

The third potential problem is the lack of mass, momentum and energy
conservation in implicit finite volume schemes and the need to use a special
technique to impose conservation in explicit schemes. The issues related to
the conservation laws may be amplified in transient flows for which accurate
prediction of time-dependent properties is a necessity.

One possible way to address the above problems is to use a DG type of
discretization both in physical and velocity space. High order DG schemes
are generally formulated both for regular and irregular partitions. They have
compact stencils and are well suited for adaptive grid refinement. A weak
enforcement of fluxes in DG discretizations is well suited for implementing
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3 THE DISCONTINUOUS GALERKIN DISCRETIZATION

realistic gas-surface interaction models. In particular, it does not require the
use of virtual cells behind solid interfaces. This type of discretization will
generally allow one to drastically increase the order of discretization and thus
reduce computational time in multi-dimensional problems. A DG approach
is therefore used in this work.

Recently an application of DG discretizations to the Boltzmann equation
was discussed in [21, 18]. In [19], the ellipsoidal-statistical BGK equation
is solved using a DG discretization in the spatial variable and discrete ordi-
nates in the velocity variable. In this paper high order DG discretizations in
the spatial variable are augmented by high order DG discretizations in the
velocity variable.

A high order DG discretization in the velocity variable is expected to
provide sufficient accuracy to enforce conservation of mass, momentum and
energy with no additional effort. It is also important to compare solutions
obtained by high order DG velocity discretizations with the conservative
discretization [12]. Both steady-state and transient flow solutions are of
interest.

3. The discontinuous Galerkin discretization

Discontinuous Galerkin methods have been applied to different gas dy-
namic equations in the past. A theoretical study of the convergence and
stability of DG formulations for the Boltzmann equation was conducted in
[17]. A general description and theory of Runge-Kutta DG methods may be
found in [23, 22]. The first application of a DG discretization of the BGK
equation in both spatial and velocity variables was presented in [20]. As in
[20] only approximations with finite support are used in this work. Let us
consider a finite region Υ ⊂ R

3 in the velocity space and assume that the
distribution function f(t, ~x, ~u) and its integrals are small in R

3 \ Υ. Note
that the method can be extended to infinite domains by using a mixture of
finite and infinite elements with appropriate basis functions.

Let us introduce partitions of the spatial domain Ω ∈ R
3 into polyhedral

elements Kj, j = 1, . . . , N and velocity domain Υ into polyhedral elements
Vi, i = 1, . . . ,M . Let polynomial basis functions ϕp,j(~x), p = 1, . . . , k and
λl,i(~u), l = 1, . . . , s be defined on Kj and Vi, respectively. On each phase
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3 THE DISCONTINUOUS GALERKIN DISCRETIZATION

element Kj × Vi the solution is sought in the form

f(t, ~x, ~u)|Kj×Vi
=

s
∑

l=1

µ(l)
∑

p=1

fl,i;p,j(t)ϕp,j(~x)λl,i(~u). (4)

If λl,i(~u) are polynomials of degree not greater than s and ϕp,j(~x) are polyno-
mials of degree not greater than k, then an efficient discretization is obtained
by setting µ(l) = min(max degree − l, k), where max degree is the desired
maximum degree of (4). In this paper max degree = max(k, s).

Let us substitute (4) into (1) and multiply the result by a basis function
λm,i(~u), m = 1, . . . , s. The DG discrete velocity formulation is obtained by
successive integration over Vi as follows:

∂tfij(t, ~x) + ∂xT̂
u
i fij(t, ~x) + ∂yT̂

v
i fij(t, ~x) + ∂zT̂

w
i fij(t, ~x)

= ν
(

(Di)
−1

∫

Vi

f0λm,i − fij(t, ~x)
)

. (5)

Here fij(t, ~x) :=
∑µ(l)

p=1 fl,i;p,j(t)ϕp,j(~x) is the vector of coefficients of the DG

discrete velocity representation and square matrices T̂v
i = (Di)

−1Tv
i , T̂u

i =
(Di)

−1Tv
i and T̂w

i = (Di)
−1Tv

i represent the coefficients of the DG discrete
velocity formulation. Matrix multiplication notation is used in (5) so that
T̂u

i fij =
∑s

l=0 T̂ml,ifl,ij. Also,

T u
ml,i =

∫

Vi

uλl,iλm,i, T v
ml,i =

∫

Vi

vλl,iλm,i,

Tw
ml,i =

∫

Vi

wλl,iλm,i, Dml,i =

∫

Vi

λl,iλm,i. (6)

In order to derive the spatial discretization, (6) is multiplied by a basis func-
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3 THE DISCONTINUOUS GALERKIN DISCRETIZATION

tion ϕq,j(~x), q = 1, . . . , µ(m) and integrated over Kj, resulting in

µ(m)
∑

p=1

∂tfm,i;p,j(t)Cpq,j −
s

∑

l=1

T̂ u
ml,i

µ(l)
∑

p=1

fl,i;p,j(t)C
x
pq,j

−
s

∑

l=1

T̂ v
ml,i

µ(l)
∑

p=1

fl,i;p,j(t)C
y
pq,j −

s
∑

l=1

T̂w
ml,i

µ(l)
∑

p=1

fl,i;p,j(t)C
z
pq,j

+
s

∑

l=1

L−

ml,ij

µ(l)
∑

p=1

fl,i;p,j∗(t)C
∂K
pq,j∗ +

s
∑

l=1

L+
ml,ij

µ(l)
∑

p=1

fl,i;p,j(t)C
∂K
pq,j

=

∫

∂Kj

ν
[(

s
∑

l=1

(Dml,i)
−1

∫

Vi

f0λl,i

)

−

µ(m)
∑

p=1

fm,i;p,j(t)ϕp,j

]

ϕq,j, (7)

where

Cj = Cpq,j =

∫

Kj

ϕp,j(~x)ϕq,j(~x),

Cx
j = Cx

pq,j =

∫

Kj

ϕp,j(~x)∂xϕq,j(~x),

C
y
j = Cy

pq,j =

∫

Kj

ϕp,j(~x)∂yϕq,j(~x),

Cz
j = Cz

pq,j =

∫

Kj

ϕp,j(~x)∂zϕq,j(~x),

C∂K
j = C∂K

pq,j =

∫

∂Kj

ϕp,j(~x)ϕq,j(~x)dσ,

C∂K
j∗ = C∂K

pq,j∗ =

∫

∂Kj

ϕp,j∗(~x)ϕq,j(~x)dσ. (8)

An upwind flux is used in this formulation. Thus j∗ is the index correspond-
ing to the element Kj∗ that shares the particular part of the boundary with
Kj. Projection operators L+

lm,ij and L−

lm,ij appearing in (7) separate modes
in fij that propagate inside and outside Kj, respectively. They are defined as

follows. Let λl and ~ξl, l = 1, . . . , s be the eigenvalues and the corresponding
eigenvectors of T̂n

ij, respectively. Let Aij be the matrix whose l-th column is
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4 THE NORMAL SHOCK WAVE PROBLEM

~ξl. We define the diagonal matrices

Λ− = diag (min(0, λ1), . . . , min(0, λs)),

Λ+ = diag (max(0, λ1), . . . , max(0, λs)).

Then the projection operators are given by

L−

ij = AijΛ
−A−1

ij , L+
ij = AijΛ

+A−1
ij .

A one-dimensional DG code has been developed that incorporates the
above scheme. The application of the code to the shock wave and heat
transfer problems is discussed in the following sections.

4. The normal shock wave problem

The accuracy and convergence of the DG approach (8) is examined below
in application to the solution of the normal shock wave problem. This is
a classical problem of gas dynamics: as such it was used for accuracy and
applicability analysis of a large number of numerical methods of fluid dy-
namics. The normal shock wave problem is characterized by a significantly
non-equilibrium velocity distribution function. It allows one to avoid prob-
lems associated with boundary conditions at solid walls. In this paper, a
weak shock wave in argon gas was modeled for a Mach number of 1.2 and
an upstream number density and temperature of 1.6×1021 molecule/m3 and
300 K, respectively. The argon viscosity was assumed to be 2.117−5 N·s/m2

at 273 K. The length of the computational domain was 0.2 m, which amounts
to about 300 upstream mean free paths. This is large enough to avoid the
impact of the size of the computational domain.

The results obtained by the DG approach are compared with the solution
of the BGK equation obtained by the finite volume approach. (Analysis of
the accuracy of the BGK approximation to the Boltzmann equation for the
normal shock wave problem and comparison with other kinetic approaches is
not the topic of the present work and may be found elsewhere [15].) A finite
volume 2D/axisymmetric code SMOKE [16] has been used to solve the BGK
equation. SMOKE is a parallel code based on conservative numerical schemes
developed by L. Mieussens [12]. A second order spatial discretization is used
along with explicit time integration. One thousand spatial cells were used,
with specular boundaries set to model 1D flow in the longitudinal direction.
The convergence study on the velocity grid was conducted, with the number
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4 THE NORMAL SHOCK WAVE PROBLEM

of (x, y, z) velocity points ranging from (20,10,10) to (60,40,40). The results
for the (30,40,40) grid are presented below.

Figure 2 shows the comparison of the solutions obtained by two different
approaches to the model kinetic equation. The DG solution was obtained
by fourth degree polynomial approximations in space on 64 cells and eighth
degree polynomial approximations in velocity space on 32 velocity bins. A
Runge-Kutta explicit scheme was used for the time integration. Only a part
of the computational domain is presented in order to show more detail of the
shock wave structure. The normalized macroparameters, U = U−U−∞

U+∞−U−∞

and

T = T−T−∞

T+∞−T−∞

, are shown. Hereafter the DG solution is denoted by BGK-DG
and the finite volume solution is denoted by BGK-FV. The results show very
good agreement between the two approaches which may be considered to be
a verification of the developed DG code.

Figure 2: Normalized velocity and temperature in a Mach 1.2 shock wave. Comparison
between the DG and FV approaches.

High order convergence of the DG method is illustrated in Figures 3 and 4.
Figure 3 shows the convergence of density profiles with respect to the velocity
variable for different orders of the DG velocity approximation. Hereafter, the
relative error is calculated as |ρ − ρref |/ρ, where ρ is the gas density in the
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4 THE NORMAL SHOCK WAVE PROBLEM

current solution and ρref is the gas density in a reference solution. Solutions
in Figure 3(a) are computed using DG approximations by first degree poly-
nomials, Figure 3(b) by fourth degree polynomials and those on Figure 3(c)
by eighth degree polynomials. The DG discretization in x is the same in each
case and used fourth degree polynomials on 32 cells. Integration in time was
conducted by a fifth order Runge-Kutta method. Note that using different
numbers of spatial and velocity cells resulted in sightly different steady-state
location of the shock wave profile. The graphs were therefore obtained by
translating density profiles that correspond to different cell numbers so that
they coincided in the center of the shock wave where the normalized density
was equal to 0.5. The accuracy of translation was maintained to the eleventh
digit. This explains the sharp drop in the numerical error in the center of
the shock wave. Note that the reference solutions ρref in Figures 3(a)–(c) are
different in each case and were obtained using the same order of velocity dis-
cretization as the compared solutions but on finer velocity grids. Specifically,
first degree polynomials on 512 velocity bins were used as reference values in
Figure 3(a), fourth degree on 128 bins in Figure 3(b) and eighth degree on
64 bins in Figure 3(c). This allows one to show that the solutions converge
with respect to the resolution in u in each case. Moreover, the graphs do
not change significantly if the reference solutions in Figures 3(a) and (b) are
replaced by the solution obtained by the eighth degree polynomials on 64
bins used in Figure 3(c). It may therefore be concluded that the solutions
do converge to an approximate solution corresponding to a given discretiza-
tion in x. At the same time, comparison to a solution obtained on a finer
grid in x—for example, 64 spatial cells—shows loss of convergence below the
level of 10−6 at the center of the shock wave, as illustrated in Figure 3(d).
This suggests that the numerical errors in these solutions are dominated by
the errors of discretization in the spatial variable. In particular, no signifi-
cant improvement in the solution can be achieved by further velocity mesh
refinement.

The shock wave solutions examined in Figure 3 exhibit very fast con-
vergence above the 10−6 level. Indeed, Figures 3(a) and (b) show an im-
provement in the solution accuracy that is seemingly better than the order
of the polynomial approximation used. This convergence can be attributed
to the properties of the distribution function. It is known that the error of
evaluating the integral

∫

∞

−∞
e−u2

du by the trapezoidal rule on a sufficiently
large finite interval decreases faster than any power of the mesh size. Simi-
larly fast convergence of quadrature rules is expected for all smooth functions
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4 THE NORMAL SHOCK WAVE PROBLEM

that rapidly decrease at infinity. It is believed that the fast convergence of
the macroparameters with respect to the resolution in velocity space is due to
the exponential decrease of the distribution function. The fast convergence
is not limited to high order DG approximations. It is expected to hold for
the discrete ordinate approach on uniform velocity bins as well. The other
necessary condition for fast convergence is the smoothness of the solution.
In particular, one should not expect fast convergence in velocity space if the
solution is contaminated by errors of discretization in physical space. Note
that the convergence becomes only second order in Figure 3(b) once the
numerical error had reached the level of the error of spatial discretization.
Interestingly, eighth degree polynomial approximations are much less sensi-
tive to the roughness of the solution and converge to almost the round-off
level.

The CPU times that correspond to the simulations shown in Figure 3
are given in Table 1. The results were obtained on an AMD Opteron 252
processor. Analysis of the Table 1 and Figure 3 shows that it is impractical
to use more than 64 bins in the first degree, 32 bins in the fourth degree and
16 bins in the eighth degree polynomial approximations. Thus the required
CPU times are 13, 060 seconds for s = 1, 15, 486 seconds for s = 4, and
15, 757 seconds for s = 8. While these run times are comparable, the s = 8
solution may be preferred since it has a faster convergence.

s = 1 s = 4 s = 8
M t, CPU sec. M t, CPU sec. M t, CPU sec.
32 6,349 8 3,891 8 7,713
64 13,060 16 7,683 16 15,757
128 25,232 32 15,486 32 30,117
256 49,665 64 30,579 64 61,188

Table 1: CPU time as a function of degree of polynomial approximation in the velocity
space.

Figure 4 illustrates the convergence of the density profile with respect
to the spatial variable. Two cases of DG approximation in physical space
are shown, with first degree polynomials plotted in Figure 4(a) and fourth
degree polynomials in Figure 4(b). The temporal Runge-Kutta integration
is second and fifth order, respectively. The DG velocity discretization is
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Figure 3: Convergence of the DG solution in a Mach 1.2 shock wave as a function of the
number of velocity bins. Comparison of the DG discretizations by (a) first, (b) fourth and
(c) eighth degree polynomials. In figure (d) solutions on 32 spatial cells are compared to
a solution on 64 spatial cells.

conducted using eighth degree polynomials on 32 uniform velocity bins in
each case. Note that the scheme using fourth order polynomials exhibits
considerably less oscillation and has better convergence at the center of the
shock wave. In both cases, the convergence generally corresponds to the
order of the polynomial approximation used.

The presented results show that the DG discretization produces accurate
solutions that converge with high order both in physical and velocity vari-
ables. Note also that since high order discretization in velocity space does
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4 THE NORMAL SHOCK WAVE PROBLEM

(a) (b)

Figure 4: Convergence of density in a Mach 1.2 shock wave as a function of spatial cells.
Comparison of (a) second and (b) fifth order DG discretizations.

not lower the CFL condition for the temporal discretization, it may serve as
an inexpensive way to increase solution accuracy.

Implementation of the DG procedure for the velocity and physical space
discretizations is more cumbersome than that of a typical FV approach. As
a result, computational time for the DG method is larger than that of FV
methods with the same order of discretizations. In the case of the second
order in space and first order in velocity discretizations the FV solver SMOKE
was two to three times faster than the DG code. Performance of the DG
method, however, can be improved by increasing the order of polynomial
approximation.

Table 2 shows the maximum error near the center of the shock wave and
the CPU time used for simulations shown in Figure 4. It can be seen that the
simulations that use a piece-wise linear approximation in space converge to
∼ 10−4 for 128 cells. At the same time, similar error is achieved for only 16
cells when a fourth degree polynomial approximation is used. Comparison of
computational times shows that the high order method is about 3.77 times
faster. Table 2 also suggests that more accurate simulations will require con-
siderably longer time for low order techniques. At least four additional grid
refinements are necessary for the piece-wise linear simulations to achieve 10−6

accuracy. Since each refinement results in about 3.5 increase in CPU time,
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5 HEAT TRANSFER BETWEEN PARALLEL PLATES

simulations based on first degree polynomial approximations will be at least
150 times slower than those for fourth degree approximations. Performance

k = 1 k = 4
N rel. err. t, CPU sec. N rel. err. t, CPU sec.
16 8.2E-3 985.97 4 1.3E-2 876.09
32 4.1E-3 3264.48 8 3.8E-3 3151.16
64 1.0E-3 11551.34 16 4.1E-4 11825.48
128 1.2E-4 44593.05 32 2.2E-6 45416.36

Table 2: CPU times for simulations by second order and fifth order methods shown on
Figure 4.

of the DG method (7) may be further improved by careful selection of ba-
sis functions and quadrature formulas for the evaluation of moments of the
distribution function. One way to do that is to generalize the approach of
[21] to the DG methods and use Lagrange polynomials on Hermite nodes as
velocity basis functions. The advantage of such a basis is that matrices (6)
are diagonal. This will simplify implementation and reduce computational
time.

5. Heat transfer between parallel plates

The normal shock wave problem, while being important for testing the
method applicability and convergence for gas flow modeling, does not allow
one to analyze the approach accuracy and robustness for modeling gas-solid
interfaces. However, gas-surface interactions are extremely important for
low-speed gas flows in microscale devices where reliable modeling of such in-
teractions is indispensable. The Maxwell model of gas-surface collisions and,
in particular, collisions with full momentum and energy accommodation at
the surface (fully diffuse reflection) are most widely used in computations
of microscale gas flows at the kinetic level. The Maxwell model is naturally
suitable for particle approaches such as DSMC. Deterministic kinetic meth-
ods, both finite difference and finite volume, generally suffer from the loss of
accuracy related to the discontinuity in the molecular velocity distribution
function at the surface. An exception here is the fully specular reflection,
which is not physically realistic.
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5 HEAT TRANSFER BETWEEN PARALLEL PLATES

In order to study the affect of gas-surface interactions on accuracy and
convergence of the DG approach, a one-dimensional heat transfer between
parallel plates was considered, with fully diffuse reflection assumed at the
wall. The cold and hot wall temperatures were 300 K and 1000 K, respec-
tively. Argon gas was modeled for two Knudsen numbers, Kn = 0.01 and
1.

First, we examine the conservation of the total mass in the numerical
solution. In the previous section it was concluded that low order velocity
discretization methods may provide accurate estimates of moments if the
numerical solution is sufficiently smooth. While this conclusion is true for
the shock wave problem, it is not the case for the heat transfer problem.
Figure 5 shows the relative error in the total mass of the gas between the
plates as a function of time. Solutions obtained by fourth and eighth degree
polynomial approximations in velocity are shown in Figures 5(a) and (b),
respectively. The spatial DG discretization is by fourth degree polynomials
with 32 spatial cells in both cases.

As expected, the error in the total mass decreases as the number of ve-
locity bins increases. However the rate of decrease suggests that for a fifth
order polynomial approximation the decrease in error is only of second or-
der. At the same time, the eighth degree polynomial approximation shown
on Figure 4(b) conserves mass within the ninth digit even when only 16 ve-
locity bins are used. Note that the rate of convergence is lost below the
10−9 level. However, at this point, the simulations had reached the rounding
off error limit and any further improvement is not expected. Note that the
use of eighth degree polynomial approximations also allows one to conserve
energy flux and maintain zero mass and momentum fluxes at the 10−8 level
of accuracy throughout the computational domain.

Similar observations can be made regarding the convergence of the density
profile with respect to the velocity variable. Comparison of solutions obtained
by fourth and eighth degree polynomial approximations in velocity space is
given in Figure 6. The cold wall is located at x = 0 and the hot wall is
located at x = 0.1. As seen in Figure 6(a) the solutions obtained by the
fourth degree approximation converge with the third order or more slowly.
As in the mass conservation analysis, the order of convergence is two units
less than the order of polynomial approximation used. It is reasonable to
assume that the convergence is slower because the solution is not sufficiently
smooth (the reasons for this are discussed below). At the same time, the
results obtained using eighth degree polynomials shown in Figure 6(b) are
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Figure 5: Convergence of relative error in the total mass with respect to the resolution in
velocity space. Comparison of (a) fourth and (b) eighth degree polynomial approximations.

not sensitive to the non-smoothness of the solution and quickly converge to
the level of the round-off error.
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Figure 6: Convergence of the solution in a Kn=0.01 heat transfer problem as a function of
the number of velocity bins. Comparison of (a) fourth and (b) eighth degree polynomial
DG approximation in velocity space.

It is not immediately obvious why the solution looses its smoothness in
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5 HEAT TRANSFER BETWEEN PARALLEL PLATES

the entire domain. A study of convergence with respect to the resolution
in physical space suggests that the non-smoothness is caused by the diffuse
boundary conditions. The convergence of the density profile with respect to
the resolution in physical space is shown in Figure 7, where solutions obtained
using first and fourth degree polynomial DG approximations in x are shown.
The Runge-Kutta time integrations are second and fifth order, respectively.
The discretization in velocity space is conducted on 32 velocity bins using
eighth degree polynomials for both cases. The order of convergence for the
density profile is second order at best. Also, there is an oscillation near the
walls. We believe that the reason for this is the discontinuity in the velocity
distribution function near the wall, as is explained below.

Generally the solution to the heat transfer problem at a finite Knudsen
number exhibits a temperature jump at the wall. This means that the tem-
perature of gas molecules that collide with the wall and the temperature of
the wall are not the same. Noticing that in the diffuse boundary conditions
the reflected gas molecules are modeled by the Maxwellian distribution func-
tion at the wall temperature and the colliding molecules are distributed very
close to a Maxwellian but have a different temperature, the diffusion bound-
ary conditions force the solution to form a discontinuity at the wall at u = 0.
Thus high gradients will appear in the direction of the velocity variable near
the wall at point u = 0. These gradients propagate inside the domain and
decay quickly with a rate governed by the collision frequency ν(x, t). This
in turns creates high gradients in the x direction, which produce a high fre-
quency error in the solution. The fact that the cold boundary has a higher
density and thus effectively a higher collision frequency explains why more
oscillations are observed near the cold wall than near the hot wall.

Let us now compare the macroparameters obtained by the FV and DG
methods of discretization. The ratios of the FV temperature profiles to the
corresponding reference DG solution computed using the ninth order in ve-
locity and fifth order in physical space scheme are presented in Figure 8(a) for
Kn=1. The figure shows that the FV solution has converged with respect to
the number of spatial cells, since the solution does not change when the num-
ber of cells is increased from 100 to 300. However, there still is a difference
between the FV and DG results that is related to the finite number of veloc-
ity bins used in the FV scheme (in this case, (40, 30, 30)). The FV scheme
corresponds to the discrete ordinate approach on a uniform velocity grid and,
as in low order DG schemes (see Figure 6), requires a very large number of
velocity bins to achieve convergence better than in the second digit. The
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Figure 7: Convergence of density in a Kn=0.01 heat transfer problem as a function of
the number of cells. Comparison of (a) first degree and (b) fourth degree polynomial DG
discretizations.

main reason for the inability of the FV method to accurately capture the
temperature profile for a limited number of velocity bins is primarily related
to the discontinuity of the velocity distribution function similar to that men-
tioned earlier. For the relatively high Knudsen number that we have used,
the distribution function at any given spatial location represents a combi-
nation of two half-Maxwellians that correspond to particles reflected on the
cold and hot plates. A large number of velocity bins is needed in the FV
method in order to properly capture such a discontinuous shape.

Another important metric of accuracy of the obtained solution is the
flow velocity between the plates. In the absence of plate motion, the gas
bulk velocity should be zero at any point between the plates. The values of
average gas velocity in the direction perpendicular to the plates are given
in Figure 8(b) for the FV and DG approaches. The FV approach that uses
100 spatial cells is characterized by relatively high, on the order 0.1 m/s,
velocities in the regions near the walls. The flow in the central region also
has noticeable velocities, with gas moving at speeds about 0.002 m/s from
the hot to the cold wall. Magnitudes of the flow velocities are relatively
small compared to the thermal velocity of about 350 m/s. However, these
magnitudes may be considerably high for some low-speed microscale flow
applications. The increase in the number of cells from 100 to 300 allowed a
significant reduction of flow velocities, although they are still visible both in
the central region and especially near the walls. It is interesting to note that
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5 HEAT TRANSFER BETWEEN PARALLEL PLATES

this numerical effect, associated with the boundary condition specification in
the FV method, is observed both at the cold and at the hot wall; the error
near the cold wall is somewhat higher. For the DG discretization, the error
in the flow velocity calculation is on the order of 10−5 m/s, and therefore
is not visible in the figure (the DG result appears to be a straight line at
Ux = 0).

(a) (b)

Figure 8: FV to DG temperature ratio (a) and gas flow velocity (b), for heat transfer
problem at Kn=1.

The decrease in the Knudsen number from 1 to 0.01 results in a signifi-
cantly faster collisional relaxation of the distribution function, which is close
to the Gaussian shape. A smaller number of velocity bins is therefore needed
in the FV method to accurately describe the flow. This is clearly seen in Fig-
ure 9(a), where the ratios of the FV to DG temperature profiles are shown.
At the same time, more spatial cells are required to properly capture the flow
gradients. When 100 cells were used, the error was over one percent. This is
not surprising since the cell size on the order of the gas mean free path is not
expected to produce accurate results in this low order scheme. For the case
of 1000 cells the error was significantly smaller and was less than 0.5% even
near the cold surface where the error was largest. For further error reduction,
more velocity bins are needed than the used value of (40,30,30). However,
as was mentioned above, the accuracy of the FV approach is limited by the
approximations used for the boundary conditions applied at the wall.

The issue with the boundary conditions is illustrated in Figure 9(b). For
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6 CONCLUSIONS

the DG discretization, the flow velocity is fairly close to zero, although the
error is somewhat larger than for Kn = 1. As discussed earlier, the most
noticeable error for this method is observed near the cold surface, where the
magnitude of the flow velocity amounts to about 0.005 m/s. In the rest of
the computational domain it is on the order of 10−4 m/s. The error was
considerably larger for the FV method, even when 1000 cells were used; in
this case the cell size was about 10% of the gas mean free path. Note that the
error in flow velocity was not localized near the walls, but propagated into
the central region of the domain, where it was over two orders of magnitude
larger than in the DG approach. The error was even larger for 100 cells,
where it reached values in excess of 1 m/s.

(a) (b)

Figure 9: FV to DG temperature ratio (a) and gas flow velocity (b), for heat transfer
problem at Kn=0.01.

Analysis of transient flow evolution for the heat transfer problem was also
conducted. At several time moments, the FV and DG results were compared
for the two Knudsen numbers under considerations. The results were found
to agree, with an error close to that observed for the steady state calculations
presented earlier.

6. Conclusions

High order discontinuous Galerkin discretizations both in spatial and ve-
locity variables were applied to the BGK equation. The normal shock wave
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and the heat transfer between parallel plates were analyzed in detail. It was
found that the solutions to the normal shock wave problem exhibit very fast
convergence with respect to the resolution in the velocity variable. The con-
vergence of the solutions with respect to spatial variable corresponds to the
order of polynomial interpolation. Furthermore, it was found that high order
DG discretizations of the kinetic equations conserve mass, momentum and
energy to a high precision. The DG solutions were compared to solutions
obtained by a FV conservative technique and were found to be in excellent
agreement. High order discretizations in the velocity variable, such as those
using basis polynomials of eighth degree, were found to produce results not
sensitive to the roughness in the solution.

It has been observed, however, that the solutions to the heat transfer
problem do not exhibit a proper convergence rate with respect to the spatial
variable. The solutions computed using approximations by polynomials of
first and fourth degrees converge with the second order or more slowly. Loss of
convergence in the heat transfer problem is attributed to the diffuse boundary
conditions. It appears that a standard formulation of the DG method is not
well suited to handle the discontinuity at the boundary that is intrinsic to
diffuse boundary conditions. Development of an improved DG techniques
that handles such a discontinuity is therefore necessary.
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